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The hydrodynamic interactions between two 
spheres in a Brinkman medium 
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The hydrodynamic interaction between two spheres in a Brinkman medium has been 
calculated using both the method of reflections and the boundary collocation 
technique. In particular, calculation of the forces and dipoles for two spheres in a 
uniform stream and linear field show that the method of reflections converges more 
rapidly than in the Stokes case, owing to screening of interactions, and that the 
boundary collocation technique produces accurate solutions at  almost all separations 
(except touching) with relatively few collocation points. 

1. Introduction 
In  this paper we calculate the hydrodynamic interactions between two spheres 

embedded in a Brinkman medium, i.e. a material characterized by a Newtonian 
viscosity ,u and a permeability a-2, subjected to an ambient velocity field composed 
of a uniform stream and a linear velocity field. Such solutions are prerequisite to any 
calculation of the effects of pair interactions on the effective permeability and 
viscosity of an array of fixed particles. The renormalization techniques presented in 
the companion paper (Kim & Russel 1985, hereinafter referred to as 11) provide one 
such application. Results are presented for two equal-sized spheres, but may be easily 
generalized for unequal spheres. 

The Brinkman (1947) equation 

-Wp+pV2v-pa2v = 0 (1.1) 

for flow through porous media combines the viscous transport of momentum in the 
Stokes equation 

- V p + , u V ~ v  = 0 (1.2) 

- W p  = pa%. (1.3) 

with the frictional drag characterized by Darcy’s law 

It is used in situations where the pressure-gradient, velocity-gradient and Darcy- 
resistance terms are all significant (Felderhof 1975 ; Felderhof & Deutch 1975; Higdon 
& Kojima 1981 ; Koplik, Levine & Zee 1983). 

Velocity representations for solutions to the Brinkman equation involve scalar 
functions that are solutions to the Helmholtz equation 

(V2-a2)  @ = 0. 

t Present address : Department of Chemical Engineering and Mathematics Research Center, 
University of Wisconsin, Madison, WI 53706. 
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Since this equation is inseparable in bispherical coordinates, this classical technique 
of low-Reynolds-number hydrodynamics (Stimson & Jeffery 1926 ; Goldman, Cox & 
Brenner 1966) cannot be applied to the Brinkman problem. However, we have 
modified two techniques from low-Reynolds-number flow : the method of reflections 
and the boundary collocation technique of Gluckman, Pfeffer & Weinbaum (1971). 
The two complement each other because the collocation technique works even at  
small (but finite) separations, whereas the method of reflections converges to the 
desired solution, at  a fraction of the computation cost, at large sphere-sphere 
separations. Furthermore, the method of reflections provides crucial information in 
the renormalization schemes that are discussed in 11. 

We discuss the method of reflections in $2, and solve for the uniform stream in 
$2.1 and linear ambient velocity fields in $$2.2 and 2.3. Section 3 on the boundary 
collocation solution is divided similarly. The results are presented in the form of 
dimensionless drag coefficients and stress dipoles (stresslets and torques). 

2. The method of reflections 
The basic solution strategy is similar to the method of reflections for Stokes flow 

as given in Happel & Brenner (1965). The original aspect of our work is the 
development and use of Faxen laws in a Brinkman medium, which greatly facilitate 
the method. 

For two widely separated spheres of radius a with centres at  x, and x2, i.e. 
Ix2-x11 % a,  the zeroth-order solution is simply the sum of the solutions for each 
sphere in isolation, i.e. without hydrodynamic interaction. In our notation these 
single-sphere solutions are written as ul and 0,. The boundary condition on a sphere 
is no longer satisfied in this zeroth-order solution, because of the velocity field 
emanating from the other sphere. Consequently, we augment the solution with two 
additional velocity fields that cancel the discrepancies at  each surface. However, any 
field that corrects the deviations in the boundary condition at one sphere will upset 
the matters at the other sphere; hence we get a sequence of velocity fields comprising 
an iterative approximation. 

The method of reflections is so called because the process of creating additional 
velocity fields to match the boundary conditions can be visualized as reflections from 
an incident field. The schematic diagram of the reflection process (figure 1 )  shows that 
a reflected field becomes an incident field on the other surface at  the next reflection. 
We will use the following convention for labelling the velocity fields. If the reflection 
occurs at the sphere at xs we label the reflected field by adding the subscript B 
(B  = 1,2) to the subscripts for the incident field. Note that the isolated single-sphere 
solutions may be considered as reflections from the ambient velocity field urn. We will 
call this the zeroth reflection, in accord with the literature. The fields reflected from 
the single-sphere solutions are the first reflections, and those from an nth reflection 
field are referred to as (n+ 1)th reflection fields. 

Given an incident field, we need a method for calculating the reflected field. Happel 
& Brenner (1965) use Lamb’s general solution with Hobson’s (1955) addition 
theorems for transforming the spherical harmonic from a coordinate system centred 
at  one sphere to one centred at the other. A similar approach may be used for the 
Brinkman equation, using the velocity representation in Stratton (1941) and the 
addition theorem presented in Glendinning & Russel (1983), but the algebraic 
manipulations are cumbersome. Instead, we present an approach based on Faxen laws 
and the integral representation for the Brinkman equation. Our technique has the 
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Moments 
Reflection 

number Moments 

.. 

FIQURE 1. A schematic representation of the reflection procedure. 

advantage of directly producing the quantities of interest - the force, torque and 
stresslet on the spheres. 

As discussed by Howells (1974), the incident field ul(x) can be cancelled at the 
sphere surface (for the sphere centred at xl) by a reflection field having the following 
integral representation : 

where u is the stress evaluated at the surface, x’ is a vector from the centre to a point 
on the surface, and 9 is the Green dyadic given by 

2 6 
a2r3 a2r5 

9 ( x ;  a) = S - “ ( 1 + a r + a 2 r 2 ) e - a r - 1 ] + ~ ~ - [ 1 - ( 1 + a r + ~ a 2 r 2 )  e-ar]. 

(2.2) 
Once the multipole moments, ~,(u.n)x’x’ ... x’dS in (2.1) are related to d ,  the 
solution scheme can proceed by calculating each reflection to the desired accuracy. 
Such relations, known as the Faxen (1922, 1927) laws, may be derived for the 
Brinkman equation by generalizing a procedure first suggested by Howells (1 974). 
He derived the Faxen law for the force (monopole moment) by applying the operator 
{ B o ( ~ a ) + B 2 ( m ) a 2 V 2 } ,  with Bo(x) = 1+x++x2 and B2(z)  = (eZ-Bo)/x2, to the 
integral representation for flow past a sphere centred at x,: 

Since v ( x )  and its gradients vanish inside the sphere, and since 

(2.4) 
4 

{Bo(aa)+B2(aa)a2V2}~(x-x’ ;  a)lz-zl = - 3a 5, 
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u-ndA = 6 x ~ a { B O ( a a ) + B 2 ( a a ) a 2 V 2 } ~ ’ ( x )  15-21. (2.5) 
= s,, 

Fp = s,, 
Howells also gives the force due to the pressure alone as 

(u.n)*nndA = 2 7 ~ , u ~ { P , ( ~ )  +P2(aa) Vz }  u’(x) Iz-zl, 

with 
ex- Po 
22 

Po(x) = 1 +x+x2, P2(x) = -. 

This procedure may be repeated with operators involving higher-order derivatives. 
The key point is that they should generate the polyadic 

bxIxI. . . x’ , 
when applied to the Green dyadic, in order that the surface integral in (2 .1 )  reduce 
to the appropriate multipole moment. The Fax6n laws for the dipole moment, 
decomposed into the symmetric (stresslet S) and antisymmetric (couplet T )  parts, 
are 

with the rate-of-strain tensor defined as e = +(Vu+VuT), 

1 +X+$XZ+&X3 
l+x COCX) = 

and 
e” - ( 1 + x) C, 

x2(1+x) ’ 
C d X ,  = 

( 2 . 7 ~ )  

(2.7b) 

Similarly, i t  can be shown that for the quadrupoles 

(Q*V):V9 = {[jsp (u*n)x’x’dA]-V}:V9 

F V2.9. 
a2 a2[ 1 + m - &(au)2] 

= - F p * V 2 9 +  
4 4B0 

These relations suffice for our purposes. Higher-order relations are necessary, 
however, in any drag calculations requiring accuracy beyond that provided by four 
reflections. 

2.1. The drug on two spheres in a uniform stream 

In this subsection we will calculate the drag on the sphere at  x,, including the 
contribution from the hydrodynamic interaction with the sphere centred at x2, by 
the method of reflections. The leading-order term is the contribution from the zeroth 
reflection, i.e. the single-sphere result given by Brinkman (1947) : 

F\O) = 67cpaBo(aa) U, 
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where U is the uniform velocity. The velocity field generated by this reflection is the 
single-sphere solution 

u 1 = -F(O)* 1 + ~ a z v 2  B, 1 9(x-x1; a)/8np. (2.8) 

The velocity field u, is obtained by switching the subscripts. These solutions are 
equivalent to those given by Brinkman (1947) and Howells (1974), but are in a form 
that is more useful for multi-particle interaction problems. 

The first correction comes from the disturbance due to the Brinkman solution u, 
from the sphere at  x,. The first reflection at x, cancels this disturbance with the 
reflected field uZl. We represent this velocity field to leading order in inverse 
separation with monopoles, dipoles and degenerate quadrupoles with strengths given 
by the Faxen laws as 

F\') = 6npa{B, + B, u2 Vz} u,(x) I,-,, 
= - 6 n p ~ U $ { B i +  [2B0B2+ ( o ~ ~ ) ~ B ~ ] u ~ V ~ } ~ ( X - X , ;  01) Iz-zl. (2.9) 

We have used V 4 9  = a 2 V 2 9  in (2.9). The dipoles are given by the Faxen laws with u1 
replaced by u,: 

Sp) = ~ n p ~ ~ { C , ( a a )  + C,(aa) a2 Va}  e, 1z.21, (2.10) 

(2.11) 

(2.12) 

The multipole expansion for u,, is 

uZ1 = - F \ 1 ~ ~ { 1 + ~ a 2 V z } ~ ( x - x l ;  01)/8np+(Sp)+Tp)):V9(~-~,;01)/8np+ ... . 
(2.13) 

The multipole expansion for ul,(x), obtained by switching indices 1 and 2 in (2.13), 

(2.14) 

The leading-order terms in the third and fourth reflection contributions to the drag 

BO 

leads to the second reflection contribution to the drag: 

F\') = G%~U{BO(WJ) +B,(o~u) a2V2} u ~ , ( X )  12-2,. 

are obtained by keeping only the monopole terms in each reflection: 

Fp) = 6npa[ -$B,I3 U93(~,-~1), 

Fi4) = 6npa[ -$B,I4 U * 9 4 ( ~ l - ~ z ) .  

(2.15) 

(2.16) 

The drag on sphere 1 is the sum of these contributions: 

4 = F\O)+F~)+F~,+F\3)+F\4)+...  . (2.17) 

The contributions to the drag from each reflection can be decomposed into components 
parallel and perpendicular to the sphere-sphere axis R. Thus the final result may be 
expressed as 

F =  ~ ~ c / x u B ,  V [ X F ( R ;  a )RR+ YF(R; 01) (S-RR)] ,  (2.18) 

Results for X, and YF are shown in figures 4 and 5 for aa = 0.1, 1.0 and 10.0. The 
collocation results are also shown in these figures. A comparison of the two methods 
is deferred to 94. 
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2.2. The stresslet on two spheres i n  a rate-of-strainfield 
The stresslet or dipole induced in a sphere in a constant rate-of-strain field E enters 
into the calculation of the particle contribution to the bulk stress. The calculations 
for force-free particles (spheres) in situations governed by the Stokes equations are 
available in Batchelor & Green (1972). In paper I1 we encountered analogous 
problems in the Brinkman medium, since momentum transfer due to velocity 
gradients can be significant in moderately permeable porous media. 

The relevant boundary-value problem is as follows. Two stationary spheres with 
centres at x ,  and x2 are placed in an ambient linear field urn = € *  (x -x , ) .  The spheres 
are not force-free, because they are fixed and do not flow with the fluid. We now use 
the method of reflections to calculate the stresslet on the sphere at  x,. 

The leading-order contributions from the zeroth reflection, i.e. the single-sphere 
stresslet and the velocity fields at each sphere, are 

sp = ynpa3C0(aa) E, (2.19) 

0, = ynpa3(€- V )  -{C0 + c, a",} 9 ( x  - x,)/Snp, (2.20) 

U, = ~ ~ ~ U [ € ~ ( X , - X , ) ] ~ ( B , + B , U ~ V ~ } ~ ( X - X , ) / ~ ~ ~ .  (2.21) 

Thus u1 is composed of Brinkman dipole and octupole fields in a linear field centred 
at x,, while u,, to leading order, is the monopole field generated by the sphere at x2 
in a uniform stream of strength E* (x , -x , ) .  By following the pattern discussed in 
$2.1, the higher-order contributions to the stresslet at x,  are determined as 

~ P ~ C C ~ U ~ ( C ,  + C,  a2V2} operating on the rate-of-strain fields : 

-%(B,+ B,  a2V2) (€ . (x ,  - X , ) ) ' 9 J ( X - X 2 )  +$23(C, + c, d V 2 )  € : V 9 ( x  - x,) 

+ ( -3&B,)3 ( E * ( x , - x , ) ) * ~ 9 J ~ 9 J ( X - x 2 ) .  (2.22) 

-$(B,+ B, a2 Vz) $3(C, + C,  a2 V2) €:V$(x, - x , ) * 9 ( x - x 2 )  

The three lines correspond to the first, second and third reflections in that order. 
The terms in (2.22) can be rearranged into the canonical form associated with the 

symmetry about the spheresphere axis R. As shown by Brenner (1972), the linear 
relation between the stresslet and the ambient rate of strain requires only three 
independent scalar functions. Thus 

sij = ? w a 3 C 0  Ekl{%XS(Rt Rj-!$i j )  (Rk  R,?-?3Skl) 

+ .f Y,(Rg Sj, Rk + Rj Sit R k  + Ri Sjk R, + Rj Si, Rl- 4 4  Rj R k  R,) 

+.fzS(Sik ' j l +  'jk 'il -'ij + Ri R j  ' k l +  'ij Rk Rl 

- Ri ' j l  R k -  R j  st', R k -  Ri ' jk  R,-  R j  &$k Rl + Ri R j  Rk R,?)}. (2.23) 

This expression is structured so that the X , ,  Y, and 2, functions are associated with 
the following canonical flows : axisymmetric extensional flow, hyperbolic straining in 
a plane containing the spheresphere axis, and hyperbolic straining in a plane 
perpendicular to the sphere-sphere axis. The results for X,,  Y, and 2, are plotted 
in figures f3-8 for aa = 0.1, 1.0 and 10.0. A discussion of the comparison with the 
collocation results is deferred to $4. 
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2.3. The torque on two spheres in a worticityjield 

The torque induced by the ambient field QT- (x - x,) can be calculated along the lines 
shown in the preceding discussion. The contributions from the reflections follow : 

(2.24) 

with 

(2.26) 

4npa3 eaa 
T(3.) lZj - - l + a a  %BO{[8T* (x2-x1)1’32}k +($jk, t - y i k ,  j )  1z-q- (2.27) 

The two-sphere symmetry permits the decomposition of the associated pseudo- 
vectors into components parallel and perpendicular to the spher-phere axis R. The 
contributions from the reflections are collected as 

T = 87~pa~Q*[X, (R;  a ) R R +  Y,(R; a) (a-RR)] ,  (2.28) 

with Ti = - etjk q k  and SZ, = #ztjk o j k .  The results are plotted in figures 9 and 10 for 
aa = 0.1, 1.0 and 10.0. 

3. The boundary collocation solution 
The method of reflections converges slowly when the two spheres are close together. 

Since the algebraic manipulations become increasingly complicated for the higher- 
order terms, another approach must be considered. The boundary collocation 
technique developed by Gluckman et a,?. (1971) accurately solves the near-field 
problem. The two techniques give identical results in the far-field, as shown in 
figures 4-10, but the method of reflections was used where possible, since it required 
less computer time. Together these two techniques provided the complete solution 
of the two-sphere problem a t  all separations. 

We construct our collocation solution in such a way that we obtain the entire 
collection of hydrodynamic functions X,, YF, X,, Ys, Z,, X, and YT from a ‘master 
solution’. We do this by noting that all ambient velocities of interest are contained 
in the following general expression for the boundary condition on the disturbance 
velocity. On the surface of sphere 1 we write 

2 1  

1-1 m-0 
u, = -urn = X I: [V{l.l, e (cos8 , )  [AloSo,+ A,, sinm$]} 

+V x { r l r ~ ~ ( ~ o s 8 , )  B,, cosm$]}]. (3.1) 

The spherical coordinates (r, ,  el, $) have their origin at x,, and the z-axis points from 
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Non-zero 
coefficient 

Hydrodynamic 
function@) 

(1) A,, = 1 uniform stream parallel to sphere-sphere axis XF 
(2) A,, = 1 uniform stream perpendicular to axis YF 

(3) A,, = 1 axisymmetric straining XS 
(4) A,, = 1 rate of strain as in (2, X)-shear flow YS 
(5) A,, = 1 hyperbolic straining in (X, Y)-plane 2, 
(6) B,, = I vorticity parallel to sphere-sphere axis XT 
(7) B,, = 1 vorticity perpendicular to sphere-sphere axis YT 

TABLE 1 

sphere 2 to sphere 1 .  The reason for the particular form for the +dependence in (3.1) 
will become apparent later on, when we examine the velocity components. In table 1 
we show how the various ambient fields are constructed. 

We now present the velocity representation and discuss the key idea behind the 
solution technique. Following Ganatos, Pfeffer & Weinbaum (1978), the velocity is 
written as a superposition of two expansions, one centred at sphere 1 and the other 
centred at sphere 2. In figure 2 , 0 ,  is defined as the complement of the conventional 
polar angle to eliminate a factor of ( - l )n in the subsequent analysis. Ganatos 
et al. (1978) used Lamb’s general solution for the Stokes equation. For the Brinkman 
equation we can use the following representation from Stratton (1941) for each 
expansion : 

1 
-- vp+v x v x (x@)+V x ( x x ) ,  
Pa 

with the pressure field p, poloidal field @ and toroidal field x satisfying 

Vap = 0, V2@-a2@ = 0, V2X-a2X = 0. (3.3a, b, c) 

Separation of variables in spherical coordinates gives 

w n  
p = C C a,,r-n-lc(cosO) (So,+sinmq5), 

n-1 m-o 
(3 .44 

w n  

n-1 m-o 
@ = C C b,, k,(ar) e ( c o s  0) (So, +sin m$), (3.4b) 

w n  

n-1 m-0 
x = Z Z c,, kn(ar)  c ( c o s 0 )  cosmq5. (3.4c) 

The modified spherical Bessel function k, is defined as in Abramowitz & Stegun 
(1965). 

The collocation technique finds approximate values for the coefficients am,,, b,, 
and cm, by truncating the series at n = N and satisfying the boundary conditions 
at N collocation points on each sphere. We will show shortly that each problem 
requires only one particular value for m, so that in the general case we have 6N 
unknowns and 6 N  equations (2N collocation points times 3 velocity components). The 
success of the collocation technique is due to the rapid convergence with respect to 
increasing N. 
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X 

1 R c 

FIQURE 2. The two-sphere geometry. 

We now take advantage of the two-sphere symmetry to simplify the problem. First, 
the problem can be reduced to a one-dimensional collocation in 8, even if the flow 
is not axisymmetric. This simplification was missed by Ganatos et al. (1978) but was 
exploited in a later work (Ganatos, Pfeffer 6 Weinbaum 1980). Secondly, for flows 
with symmetry about the (X, Y)-plane, the coefficients for the expansion at sphere 2 
either equal or are negatives of the corresponding coefficient in the other expansion. 
The sign depends on whether the ambient field possesses mirror symmetry or mirror 
antisymmetry, defined as follows : 

mirror symmetry mirror antisymmetry 

V,"(Z,Y,Z) = G W , y ,  -4 ,  
V , m ( z , Y A  = - q ( z , Y ,  -21, 

v:(z, Y, 4 = -v2(2, Y, - 2 ) .  

m 
8, (5, y9 2 )  = -v,"(z, y ,  - z ) ,  

v,m(s,y,z) =v,m(z,y, -4 ,  
v:(z, y , z )  =v,m(z,y, - 4 ;  

The coefficients can be related as 

a(') = sag),, b g i  = Sb(2) c(l) = -&(a) mn mn! mn mn, 

where the superscripts refer to the expansion and with the symmetry parameter S 
defined by 

1 
- 1 

if om has mirror symmetry, 
if vm has mirror antisymmetry. 

S(u"0) = { 
The symmetry properties are passed exactly to the collocation approximants if 
the collocation points on sphere 2 are placed at the mirror images of the points on 
sphere 1. 

We now set the boundary conditions by evaluating the velocity components in the 
cylindrical coordinate system ( z ,  a, 4). It is then discovered that the #-dependence 
can be factored as follows. For each boundary-value problem a single term is retained 
in (3. l ) ,  and the value of m for that term is the only one that is required in the velocity 
representation. After this simplification, one finds that the $-dependence in the 
z-component and a-component equations is sinm$ for all terms, while for the 
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#-component of the velocity i t  is COY m$. Thus the $-dependence can be factored to 
arrive a t  the following set of equations from the z-,  u- and $-components respectively : 

n-1 

n+l S 

+ b m n a r M  P1 k n ( p l ) e S l - ( k k + 2 )  Q'S16, 

= A,, "pr"+ B,, S, pz"', ( 3 . 5 ~ )  
n 1  

with Ec = cosei, Si = sinei and pi = arc. e without an argument denotes e(5,). 

the pioneering work of Gluckman et al. (1971). Their principal findings are 
There is an extensive discussion on the optimal location of collocation points in 

( 1  ) equidistant spacing is superior ; 
(2) the point at the equator is important because it gives the cross-sectional scale; 
(3) the system of equations is destabilized if points are placed on the equator; 
(4) the system of equations becomes singular if points are placed at the poles. 

They circumvented ( 3 )  and (4) by using the collocation scheme of figure 3 ( b ) .  The 
solution was obtained by examining the limit as the twin points approached the 
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(6) (4 
FIGURE 3. Three collocation schemes. 

equator (figure 3c). For narrow gaps or touching spheres, the cusp geometry at the 
poles is important. Leichtberg et al. (1976) have studied the limiting behaviour as 
points are placed successively closer to the poles. 

Our collocation scheme corresponds to figure 3(a) .  We have observed that if the 
number of points is 10 or more, placement of a ‘point’ at  the equator is not essential. 
However, we have discovered a rigorous method for placing points at the poles by 
removing analytically the singularities from the system of equations and consequently 
a more robust set of equations at narrow gaps. 

The system of equations in (3.5u-c) becomes singular when a point is placed at  a 
pole, because the z-component equation vanishes (for m > 0) and because the 
u-component and $-component equations are identical at the poles. The former is 
due to a zero of multiplicity m, which can be removed by factoring sinm O1 from the 
equation. The latter is resolved by examining the difference of (3.5b) and (3.5c), i.e. 

n + m  03 

n-l 

- c m n [ k n ( p l )  ~ + 1  +~kn(p2) ~ + 1 ( 5 2 ) 1 }  

= AZm[(l - m )  S,  F - 6, pin+'] - B,, F+l. (3.5d) 

At the poles it has a zero of multiplicity m + 1 ,  i.e. it is singular for all problems, which 
can be removed by factoring sinm+l 8,. Thus, if we use (3.5u), ( 3 . 5 ~ )  and (3.5d) with 
the zeros removed, including sinm-l from (3.5c), then points can be placed at the 
poles. A t  the poles the error in the surface velocity resembles an Hermite interpolant, 
and the cusp geometry is reproduced. 

All of the hydrodynamic functions now can be obtained from the coefficients in 
the velocity expansion. From here on, when we write a,,(m, 1 ,  S), bmn(m, 1 ,  S) and 
cmn(m, 1, S), the arguments m, 1 and S indicate that these coefficients were obtained 
by solving the system of equations (3.5a, c ,  d )  with those parameters. Where 
necessary, we will specify whether A,, or B,, is used. 

3.1. The drag in a uniform stream 

There are two steps in the determination of X F ( R ;  a) and YF(R; a). First, 1 and m 
are chosen as shown in table 1 and S from the definition for mirror symmetry. 
Secondly, our expansion is rewritten as a multipole expansion, in gradients of the 
fundamental solution. The coefficient of the monopole is then identified with X, and 
YF. After some algebra, we obtain 

Xi@; a) = $aa,,(O, 1 ,  - 1 1 ,  Y,(R; a) = $ a 1 1 ( 1 , 1 ,  - 1 ) .  (3.6a, b )  
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FIQURE 4. Drag on one sphere, normalized by single-sphere result; the sphere-sphere axis is 
parallel to the uniform stream: +, au = 0.1; *, 1.0; 0,  10.0; -, method of reflections. 
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FIGURE 5. Drag on one sphere, normalized by single-sphere result; the spheresphere axis is per- 
pendicular to the uniform stream: +, au = 0.1; *, 1.0; 0, 10.0; -, method of reflections. 

with A,, and A,, non-zero respectively. The plots of these functions (figures 4 
and 5), from almost-touching to  R = 5a, show agreement with the method of reflec- 
tions. (All plots were obtained with 12-point calculations.) 

3.2. The stresslet in a rate-of-strain field 
The stresslet is determined by the functions X,(R; a), Y,(R; a) and Z,(R; a). Again, 
1 and m are chosen as shown in table 1, S from the definition for mirror symmetry, 
and the velocity expansion is rewritten as a multipole expansion, in gradients of the 
fundamental solution. The coefficient of the symmetric dipole is then identified with 
X,, Ys and 2,. After some algebra, we obtain 

X d R ;  a) = &[a02(0,2,1)--Ra,2(O, 1, I)], 

Z,(R; a) = &42, 2,1), 

(3.7a) 

Y,(R;a) = &[~12(1 ,2 , -1 ) -~~a1~(1 ,1 , -1 )1 ,  (3 .7b)  

(3.7c) 
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FIGURE 6. Brinkman stresslet function X, normalized by single-sphere result: 
+, aa = 0.1; *, 1.0; 0, 10.0; -, method of reflections. 
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FIGURE 7. Brinkman stresslet function Y, normalized by single-sphere result : 
+, aa = 0.1; *, 1.0; 0, 10.0; -, method of reflections. 

with the appropriate A,, non-zero. The second terms in (3 .7a,  b) originate from the 
translation of the centre of the rate of strain. We have merely exploited the linearity 
of the Brinkman equation in order to obtain mirror-symmetric problems. Once again, 
the plots of these functions (figures &8), from almost-touching to R = 5a, show 
agreement with the method of reflections. 
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FIGURE 8. Brinkman stresslet function 2, normalized by single-sphere result: 
+, aa = 0.1 ; *, 1.0; 0,  10.0; -, method of reflections. 

3.3. The torque in a vorticityjeld 
The functions X,(R; a) and YT(R; a) are calculated by choosing 1 and m as shown 
in table 1 and S from the definition for mirror symmetry. The velocity expansion is 
rewritten as a multipole expansion, in gradients of the fundamental solution. The 
coefficient of the antisymmetric dipole is then identified with X, and Y,. After some 
algebra, we obtain 

XT(R;  a)  = -$n(aa)-2c01(0, 1 ,  l ) ,  ( 3 . 8 ~ )  

YT(R; a)  = -~n(aa)-2[cl l ( l ,  1, - l ) - i R c l l ( l ,  1 ,  l)]. (3 .8b)  

I n  ( 3 . 8 ~ )  col uses B,, = 1. However, in (3 .8b)  the first coefficient uses B,, = 1, while 
the second uses A,, = 1 .  The second term comes from the uniform stream associated 
with the shift in the centre of the vorticity field. The plots in figures 9 and 10 show 
the agreement with the method of reflections. 

4. Results 
The results for the drag functions X, and YF, the stresslet functions X,, Y, and 

Z,,  and the torque functions X ,  and YT using the collocation technique and the 
method of reflections are plotted in figures 4-10. All curves have been normalized 
by the single-sphere result. The behaviour is illustrated for aa = 0.1, 1.0 and 10.0. 
For R > 3a, the collocation technique converged to  five significant figures with eight 
collocation points. As expected, agreement between the two methods improved with 
increasing separation. At a fixed separation the method of reflections gave better 
results with increasing aa, where the higher-order reflections are damped more 
rapidly. 

We note that for two spheres with their axis perpendicular to the uniform stream 
(figure 5 )  the drag exceeds that on an isolated sphere beyond a critical separation. 
This effect becomes more pronounced with increasing aa, and is due to a transition 
in the first-reflection contribution. Beyond a screening lengthscale of order a-l, the 
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FIGURE 10. Brinkman torque function YT normalized by single-sphere result: 
+, au = 0.1 ; *, 1.0; 0, 10.0; -, method of reflections. 

streamlines of the fundamental solution of the Brinkman equation resemble a dipole 
field, and the. flow is opposite to  the direction of the point force (as in the fieldlines 
for a magnetic dipole). Thus, if the second sphere lies beyond the screening 
lengthscale, the first reflection increases the drag on the first sphere. For a = 0(1), 
YF has a readily distinguished maximum because the contribution from the first 
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reflection reverts to the usual behaviour in the near field. This effect is also present 
in Ys and 2,. 

For the stresslet and torque functions, at  fixed values of aa, R and number of 
collocation points, the agreement between the method of reflections and the 
collocation solution is superior for the 2, and X, functions. This arises because the 
dominant contributions to the stresslet and torque, i.e. the ones that trace back to 
the monopole field induced by the sphere at x2, contain no 2, and X, components. 
Thus the hydrodynamic interactions decay more rapidly for these functions. 

This material is based upon work supported by the National Science Foundation 
under grant CPE-8116339 to W.B.R. Additional funding was provided by the 
Westvaco Corporation and the George Van Ness Lothrop Fellowship to S.K. from 
the School of Engineering, Princeton University. 
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